
Advanced Information, Computation, Communication II Homework - 6
Spring 2025 Exercise session on Wednesday, March 26

Problem 6.1.

1. Compute the following:

(a) 6365 mod 7,

Solution:

We have 6 ≡ −1 mod 7, so 6365 ≡ −1 ≡ 6 mod 7.

(b) 2981 mod 5,

Solution:

We have 22 ≡ −1 mod 5, so

2981 = 2 · 4490 ≡ 2 · (−1)490 = 2 mod 5.

(c) 323 · 524 mod 16,

Solution:

We have
323 · 524 = 5 · 1523 ≡ (−1)23 · 5 ≡ −5 ≡ 11 mod 16.

(d) 392 · 26019 mod 13.

Solution:

Observe that 392 = 13 · 30 + 2 and 26019 = 13 · 2000 + 19, so 392 · 26019 ≡
2 · 19 ≡ 38 ≡ 12 mod 13.

Relevant slide : 330

2. Prove that for any integer x that is not divisible by 3, and any even integer n, we have
xn ≡ 1 mod 3.

Solution:

Let n = 2m. Since 3 does not divide x, it does not divide xm either. Then, either
xm ≡ 1 mod 3 or xm ≡ 2 mod 3. If xm ≡ 1 mod 3, then

xn = (xm)2 ≡ 12 = 1 mod 3,

and if xm ≡ 2 mod 3, then

xn = (xm)2 ≡ 22 = 4 ≡ 1 mod 3.

Relevant slide : 330

3. Compute the remainder of 2761
435+97! modulo 3.
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Solution:

We have 2 ≡ −1 mod 3. Since 761435 + 97! is odd, 2761
435+97! ≡ −1 ≡ 2 mod 3.

An alternative solution makes use of the previous question: 761435+97! is odd, so
761435 + 97!− 1 is even. From the previous question, 2761

435+97!−1 ≡ 1 mod 3. So

2761
435+97! ≡ 2 · 2761435+97!−1 ≡ 2 mod 3.

Relevant slides : 330, 334

4. Show that there is no number n which is congruent to 3 mod 4 and to 5 mod 8.

Solution:

If n is congruent to 5 mod 8, then n = 5+8·k for some integer k, so n = 5+4(2·k),
i.e. n ≡ 5 ≡ 1 mod 4, so n can not be congruent to 3 mod 4.

5. Let m,x and e be positive integers. Let e = (bk . . . b0)2 be the binary representation

of e (i.e., bi ∈ {0, 1}, and e =
∑k

i=0 bi2
i). Let x0 = x mod m and for each i > 0, let

xi = x2
i−1 mod m. Show that

xe ≡
k∏

i=0

xbi
i mod m.
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Solution:

Let us compute xe mod m:

xe ≡ x
∑k

i=0 bi2
i

mod m

≡ xb0+2b1+···+2kbk mod m

≡ xb0x2b1 · · · x2kbk mod m

≡ (xb0 mod m)(x2b1 mod m) · · · (x2kbk mod m)

≡ xb0
0 [x

2
0]

b1 · · · [x2k

0 ]bk mod m

≡ xb0
0 x

b1
1 · · ·xbk

k mod m

≡
k∏

i=0

xbi
i mod m.

A more rigorous approach would consist in replacing the dots (· · · ) from the
expressions above by an induction step. In this case the proof is as follows. First
note that for each i, xi ≡ x2i mod m. Indeed, x0 ≡ x ≡ x20 mod m; suppose by
induction that xi ≡ x2i mod m for a certain index i ≥ 0; then

xi+1 ≡ x2
i ≡

(
x2i

)2

= x2i+1

mod m,

concluding the induction. Now,

k∏
i=0

xbi
i ≡

k∏
i=0

(
x2i

)bi
≡

k∏
i=0

xbi2
i ≡ x

∑k
i=0 bi2

i ≡ xe mod m.

6. Use the previous question to compute 559 mod 23.
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Solution:

We have 59 = (111011)2. Define

x0 = 5,

x1 = 52 mod 23 = 2,

x2 = 22 mod 23 = 4,

x3 = 42 mod 23 = 16,

x4 = 162 mod 23 = 256 mod 23 = 3,

x5 = 32 mod 23 = 9.

Then,

559 ≡ x0 · x1 · x3 · x4 · x5 ≡ 5 · 2 · 16 · 3 · 9
≡ (5 · 4) · (8 · 3) · 9 = −3 · 1 · 9 ≡ −27 ≡ 19 mod 23.

This method of exponentiation is called “square and multiply”. It is a very efficient
algorithm used to compute modular exponentiations with huge numbers. Note that
this algorithm uses at most 2k multiplications (k multiplications while computing
xi, i = 0, . . . , 5 and another k when multiplying them), where k = ⌊log2e⌋.

Problem 6.2.

(This problem mostly requires the same techniques of the previous one. You can solve this to
practise more on modular arithmetic.)

1. Compute the following without using a calculator:

(a) 37121 mod 7,

Solution:

We have 37 ≡ 2 mod 7. Also, 23 ≡ 1 mod 7, so

37121 ≡ 23·40+1 ≡ (8)40 · 2 ≡ 2 mod 7.

(b) 18243 mod 19,

Solution:

We have 18 ≡ −1 mod 19, so

18243 ≡ (−1)243 ≡ −1 ≡ 18 mod 19.

(c) 317! mod 27,

Solution:

We have 33 = 27 ≡ 0 mod 27, so

317! ≡ 33 · 317!−3 ≡ 0 mod 27.
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(d) 460002 · 25 mod 23,

Solution:

We have 460002 = 23 · 20000 + 2, so 460002 ≡ 2 mod 23. Therefore

460002 · 25 ≡ 2 · 2 ≡ 4 mod 23.

(e) 111223344556677889975310024681379 mod 8,

Solution:

100 ≡ 1 mod 8
101 ≡ 2 mod 8
102 ≡ 4 mod 8
10n ≡ 0 mod 8 ∀ n ≥ 3

Thus,

111223344556677889975310024681379 ≡ 379 ≡ 3× 4 + 7× 2 + 1
≡ 4 + 6 + 1 ≡ 3 mod 8.

Relevant slide : 330

2. Compute 65363549000917 mod 9.

Solution:

As seen in class, a decimal number is congruent to the sum of its digits modulo
9, so

65363549000917 ≡ 6 + 5 + 3 + 6 + 3 + 5 + 4 + 9 + 9 + 1 + 7

≡ 58 ≡ 5 + 8 ≡ 13 ≡ 1 + 3 ≡ 4 mod 9.

Relevant slides : 337 - 338

3. Decide whether or not the multiplication

6453601 · 23456 = 151975665056

is correct by reducing mod 9.

Solution:

By the same method, we get 6453601 ≡ 7 mod 9 and 23456 ≡ 2 mod 9, so 6453601·
23456 ≡ 5 mod 9. But 151975665056 ≡ 2 mod 9, so the multiplication is incorrect.

Relevant slides : 337 - 338

4. Prove that given a number represented in base 10 as n = (dk . . . d1d0)10 (with digits

di ∈ {0, 1, . . . , 9}), we have n ≡
∑k

i=0(−1)idi mod 11.
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Solution:

We have 10 ≡ −1 mod 11, so

n =
k∑

i=0

10idi ≡
k∑

i=0

(−1)idi mod 11.

5. Using the previous question, compute 9760145571116 mod 11.

Solution:

We have

9760145571116 ≡ 9− 7 + 6− 0 + 1− 4 + 5− 5 + 7− 1 + 1− 1 + 6

≡ 17 ≡ −1 + 7 ≡ 6 mod 11.

6. Given a number n represented in base 10, find a similar method to compute n modulo
1001, and use it to compute 4067007258442 modulo 1001.

Solution:

Consider n = (dk . . . d1d0)10. Without loss of generality, suppose that the number
of digits is divisible by 3 (if necessary, add one or two leading zeros to the repre-
sentation of n). Write k = 3ℓ − 1. Grouping the digits of n three by three, we
have

n =
ℓ−1∑
i=0

1000i(d3i+2 d3i+1 d3i)10.

Since 1000 ≡ −1 mod 1001, we get

n ≡
ℓ−1∑
i=0

(−1)i(d3i+2 d3i+1 d3i)10 mod 1001.

Therefore,

4067007258442 ≡ 4− 67 + 7− 258 + 442 ≡ 128 mod 1001.

7. Which of the following numbers are multiples of 11?

a = 679876543210112277 + 211231239875566 + 9
b = 1094648731230355 + 5665659313514739945 + 1
c = 36102498765 + 90907864310 + 7
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Solution:

The numbers are obviously too big to be calculated directly on a computer. We
use instead the theory of modular arithmetic. First, notice that 67 = 66 + 1 such
that

67 ≡ 66 + 1 ≡ 0 + 1 ≡ 1 (mod 11)

Thus,

67n ≡ 1n ≡ 1 (mod 11)

Therefore,

679876543210112277 ≡ 1 (mod 11)

Similarly,

21 ≡ 22− 1 ≡ 0− 1 ≡ −1 (mod 11)

Thus,

211231239875566 ≡ (−1)1231239875566 ≡ 1 (mod 11)

since 1231239875566 is even. Putting everything together, we obtain

a ≡ 1 + 1 + 9 ≡ 11 ≡ 0 (mod 11)

So a is indeed a multiple of 11.
For b, notice that

109n ≡ (−1)n (mod 11)

Thus,

1094648731230355 ≡ (−1) (mod 11)

since 4648731230355 is odd. We also notice that

5665659313514739945 ≡ 1 (mod 11)

Therefore,

b ≡ (−1) + 1 + 1 ≡ 1 (mod 11)

So b is not a multiple of 11.
For c, notice that 36 = 12 ·3. Then, 12 ≡ 1 (mod 11), so we are left with 3102498765.
The exponent is a multiple of 5, and one can check that 35 ≡ 1 (mod 11), so that
we can conclude that 3102498765 ≡ 1 (mod 11).
For the second term, we can write 90 = 45 · 2. Then, 45 ≡ 1 (mod 11), so we are
left only with 2907864310.
The exponent is a multiple of 10. One can check that 25 ≡ −1 (mod 11), so that
210 = (25)2 ≡ 1 (mod 11) and we can conclude that 2907864310 ≡ 1 (mod 11).
Hence, summing up modulo 11 we have that

36102498765 + 90907864310 + 7 ≡ 1 + 1 + 7 ≡ 9 (mod 11)

Therefore, c is not a multiple of 11. 7



Problem 6.3.

1. Let x = 021395789400. Perform (by hand) the Euclidean division of x by 97.

Solution:

In order to avoid calculations with large numbers, we start by writing x = 100x0

where x0 = 213957894. Then, since 100 ≡ 3 (mod 97),

x ≡ 100x0 ≡ 3x0 (mod 97)

To compute the remainder of the division of x0 by 97, we write x0 as

x0 = 2×108+1×107+3×106+9×105+5×104+7×103+8×102+9×101+4×100

Furthermore, we calculate the remainders for the division of powers of 10 by 97:

10 ≡ 10 (mod 97)
102 ≡ 3 (mod 97)
103 ≡ 30 (mod 97)
104 ≡ (102)2 ≡ 9 (mod 97)
105 ≡ 90 (mod 97)
106 ≡ 104 × 102 ≡ 27 (mod 97)
107 ≡ 270 ≡ 76 (mod 97)
108 ≡ (104)2 ≡ 81 (mod 97)

Therefore,

x0 ≡ 2× 81 + 1× 76 + 3× 27 + 9× 90 + 5× 9 + 7× 30 + 8× 3 + 9× 10 + 4× 1

≡ 1502

≡ 1× 30 + 5× 3 + 0× 10 + 2

≡ 47 (mod 97)

Going back to x, we find x ≡ 3× 47 ≡ 141 ≡ 44 (mod 97), which means that the
remainder of the division of x by 97 is r = 44.
Thus the quotient can be obtained as

q =
x− r

97
= 220575148

Compute the two control digits MOD 97-10 for the telephone number
x1 = 021 395 7894.

Solution:

The two control digits can be obtained by computing the remainder after division
of x = 021 395 7894 00 by 97, and then by computing c = 98 − r. We have
previously computed r = 44, hence the control digits are 54.

Relevant slides : 339 - 342

2. Let x̃1 be the number obtained by replacing 02 with 99 in x1:

x̃1 = 991 395 7894
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Compare the control digits MOD 97-10 of x1 and x̃1.

Solution:

We append two zeros at the end of x̃1 and obtain x̃ = 991 395 7894 00. Following
the same method as in part 1, we obtain the remainder after division of x̃ by 97,
r̃ = 44, which is the same as for x. Thus, x1 and x̃1 have the same control digits
MOD 97-10.

3. More generally, let z be an integer whose decimal representation includes twice the digit
9 in consecutive positions. Let z′ be the number obtained by replacing 99 with 02 in z.
Show that z − z′ is a multiple of 97.

Solution:

Let zn, . . . , z0 be the digits of the decimal representation of z:

z = zn × 10n + · · ·+ z1 × 101 + z0 × 100

Let k and k + 1 be the positions where the two consecutive digits 9 are located,
that is, zk+1 = zk = 9.
We have

z = zn × 10n + · · ·+ 9× 10k+1 + 9× 10k + · · ·+ z1 × 101 + z0 × 100

z′ = zn × 10n + · · ·+ 0× 10k+1 + 2× 10k + · · ·+ z1 × 101 + z0 × 100

Thus,

z − z′ = 9× 10k+1 + 7× 10k = 90× 10k + 7× 10k = 97× 10k

So z − z′ is divisible by 97 (the quotient is 10k).

If 99 was replaced by mistake with 02, can the control digits of MOD 97-10 detect this
error?

Solution:

Let z1 = 100z and z′1 = 100z′. Since z − z′ ≡ 0 (mod 97), z1 − z′1 ≡ 0 (mod 97)
as well. Hence, the control digits of MOD 97-10 will be the same, and the error
will not be detected.

Relevant slides : 339 - 342

4. Suppose a bank uses MOD 97-10 to ensure that messages from customers are transmitted
to the bank without modifications. It is known that the bank encodes wire transfer orders
in the format

M = DDDDDDDDDD∥AAAAAAA∥CC

where the first part (represented by the D’s) is the ten-digit receiving account number,
the second part (represented by the A’s, padded on the left by zeros if necessary) is the
amount to be transferred, and the final part (represented by the C’s) is the MOD 97-10
control digits. Note that there are exactly 7 digits in the ‘Amount’ part; bigger tran-
sactions will require in-person confirmation. Recall that ‘∥’ denotes the concatenation
operator.
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You, a software engineer by day, malicious hacker by night, have somehow managed to
find a way to modify up to two digits in such messages while they are being transmitted.
You are unhappy with your salary of CHF 10′000 a month from your day job. You
intercept the following message

Msalary = 1461319897001000010

for the salary of March ’25 from your employer to the bank. How much more money can
you make the bank transfer to your account instead?

Solution:

We can easily see that modifying the message first to

Mmodified = 1461319897901000010

will be the first step, since it gains you the most money by modifying a single
digit. However, you can only modify one more digit and also make sure that the
control digits match the rest of the message. Thankfully, using the result from the
previous part, you can add another CHF 700′000 in the uncoded part and escape
detection, resulting in a net gain of CHF 9′700′000 (check that the control digits
remain the same in this case). Your final message is thus

Mmodified = 1461319897971000010

Good luck, it is only a matter of time before your employer will start noticing!
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